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We introduce GeoFlow-V2, a unified atomic diffusion model that seamlessly integrates structure
prediction and de novo protein design across multiple biological modalities, including proteins,
nucleic acids (DNA/RNA), and small molecules. The model’s core innovation lies in its unified
architecture that natively handles both structure prediction (when provided with complete input
sequences) and generative design (for partially or fully masked inputs) through a shared atomic
diffusion process. Through the integration of structure conditioning constraints and the sequence
design module, GeoFlow-V2 operates as a fully bidirectional framework, accepting both sequence and
structural inputs while generating corresponding outputs. GeoFlow-V2 can also accommodate diverse
experimental constraints and prior knowledge, which boosts performance and enables precise control
over the folding and design process. Benchmarking against state-of-the-art methods demonstrates
GeoFlow-V2’s strong performance in both structure prediction and de novo antibody design. We
showcase GeoFlow-V2 ’s versatility through protein design cases conditioned on diverse target
modalities. To maximize accessibility, we engineer key functionalities of GeoFlow-V2 and provide a
user-friendly web server at prot.design for non-commercial research use.
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Figure 1 | Overview of the GeoFlow-V2 model architecture and inference workflow.
GeoFlow-V2 is a unified atomic diffusion model designed to seamlessly integrate both structure prediction and de novo
protein design across multiple modalities, including DNA, RNA, molecules, and proteins. Key features include the ability
to perform structure prediction when provided with complete protein sequences (and optionally sequences from other
modalities), highlighted in purple, with the confidence module evaluating the accuracy of these predictions. For partially or
fully masked proteins, GeoFlow-V2 performs de novo protein design, highlighted in blue, generating both structures and
sequences using either its native co-design module or external inverse folding modules. The model accepts various constraint
features, such as epitope constraints and target structure conditioning, enabling precise control over the folding and design
process. Through the integration of the structure conditioning module and sequence design module, GeoFlow-V2 operates
as a fully bidirectional framework, accepting both sequence and structural inputs while generating corresponding outputs.
This capability enables design recycling for a second round of confidence score estimation, facilitating high-accuracy in
silico screening of high-potential binders.
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GeoFlow-V2: A Unified Atomic Diffusion Model for Protein Structure Prediction and De Novo Design

1. Introduction

Proteins serve as life’s essential molecular machinery, governing virtually all biological processes.
The dual challenges of determining their three-dimensional structures (structure prediction) and
engineering novel functional variants (protein design) represent foundational problems in compu-
tational biology. The field’s transformative potential was recently recognized by the 2024 Nobel
Prize in Chemistry, awarded for groundbreaking advances in both protein structure prediction and
computational protein design, highlighting the profound impact of these technologies on modern
biological research.

Modern structure prediction methods, exemplified by AlphaFold 3 (Abramson et al., 2024), have
achieved remarkable accuracy by leveraging deep learning approaches (LeCun et al., 2015) trained
on extensive structural datasets. Concurrently, the field of protein design has entered a new era
through the development of diffusion models (Bennett et al., 2024; Krishna et al., 2024; Watson et al.,
2023) that can generate functional proteins with atomic-level precision, opening new possibilities for
therapeutic development and synthetic biology.

Despite these parallel successes, current algorithms typically treat structure prediction and gener-
ative design as separate tasks. Recent efforts to repurpose structure prediction models for inverse
design (Anishchenko et al., 2021; Cho et al., 2025; Krishna et al., 2024; Volk et al., 2023; Watson
et al., 2023) have revealed untapped generative potential in these models, but remain limited by their
original architectures.

In this technical report, we present GeoFlow-V2, a unified atomic diffusion model that bridges the gap
between structure prediction and generative design across multiple biological modalities including
proteins, nucleic acids, and small molecules. Our framework is built on the key insight that both
structure prediction and design can be formulated as a conditional generation task where the model
“inpaints” the input sequence and structure. E.g., in structure prediction, the model generates the full
structure from a complete sequence; in protein binder design, the model generates the target-binder
complex sequence and structure from the target sequence and structure. Under this formulation, we
unify prediction and generation within a single, coherent diffusion generative framework through
three key innovations: (1) pseudo protein sequences for unified protein generative modeling; (2)
structure conditioning constraints and sequence co-design module, which enable the model to process
both sequence and structural inputs and generate corresponding outputs; and (3) constraint-aware
structure modeling that integrates experimental data and prior knowledge to guide the folding and
design process.

The highlights of this report include:

• A Unified Atomic Diffusion Framework. GeoFlow-V2 establishes a unified architecture that
bridges protein structure prediction and de novo design through a shared atomic diffusion
process. The model handles both tasks natively–performing accurate structure prediction when
given complete sequences while enabling generative design when provided with partially or
fully masked inputs. This multimodal capability spans across key biological modalities including
proteins, nucleic acids, and small molecules.

• Versatile Constraint Support. GeoFlow-V2 can incorporate diverse experimental constraints
and prior knowledge to guide protein folding and design process.

• Competitive Model Performance. Comprehensive benchmarking demonstrates GeoFlow-V2’s
strong performance across multiple tasks, including protein structure prediction and de novo
antibody design. Our optimized lightweight variant, delivers 150-250x faster inference speeds
than AlphaFold Multimer V2.3 for antibody structure predictions with even higher accuracy.

• Accessibility. A user-friendly web server is available at prot.design, providing three engineered
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functionalities of GeoFlow-V2, ranging from antibody-antigen structure prediction to de novo
VHH design and protein binder design.

2. Overview

Our model architecture and training strategy primarily follow AlphaFold 3 (Abramson et al., 2024),
with two distinct training configurations: for evaluation purposes, we use a training data cutoff of
2021-09-30 following Abramson et al. (2024); for production environments, we continuously train the
full model with data through 2024-06-30. The key innovations of our method (Fig.1) are summarized
in the following subsections.

2.1. Unifying Structure Prediction and Generation

Recent advances in large-scale structure prediction models–including AlphaFold Multimer V2.3 (Evans
et al., 2021), RoseTTAFold2 (Baek et al., 2023), AlphaFold 3 (Abramson et al., 2024), Protenix (Team
et al., 2025), Chai-1 (team et al., 2024), and Boltz (Wohlwend et al., 2024)–have achieved remarkable
success in biomolecular structure determination through training on extensive experimental and
distilled structural data. While originally developed for structure prediction, recent studies have
demonstrated these models’ latent capability for inverse structure generation, particularly in protein
design (Anishchenko et al., 2021; Cho et al., 2025; Krishna et al., 2024; Volk et al., 2023; Watson et al.,
2023). Crucially, we observe that structure prediction can be reformulated as a conditional generation
task where the sequence specifies the desired output. We reason that by systematically altering the
input conditions—replacing complete sequences with (partially or fully) masked sequences—we can
unify structure prediction and generation within a single framework. The same architecture can
thus seamlessly transition between the two capabilities through controlled conditioning. However,
protein design additionally requires target structure conditioning and structure-conditioned sequence
design, which the current architecture cannot natively support. We therefore introduce several key
innovations to enable these essential features.

Pseudo Protein Sequence. The input protein sequence can exist in three states: (1) Complete
sequence; (2) Partially masked sequence; or (3) Fully masked sequence. Masked residues are replaced
with an “UNK” pseudo-residue containing only the four backbone atoms (C, N, O, and C𝛼). The
masking pattern is task-dependent (e.g., CDR residues for de novo antibody design) and are not
required to be continuous. During training, we randomly apply masking using predefined schemes for
either continuous sequence segments or spatially proximal residues, following AlphaFold 2’s cropping
approach (Yang et al., 2023). The current implementation focuses solely on protein masking, and we
leave the extension to other modalities for future work, but the model can condition on full sequences
of other modalities (e.g., ligand).

Apo / Holo Structure Conditioning. Protein design applications—particularly protein binder design
and motif scaffolding—frequently require target structure conditioning, especially for challenging
targets (Bennett et al., 2023). To this end, we introduce a dedicated structure encoding module
that encodes the coarse-grained distance map of the target structure. The structure is converted to a
distance map in Angstrom, perturbed with Gaussian noise, and transformed into binned 2-dimensional
one-hot features. This module operates orthogonally to the native template encoder, which handles
searched and aligned structural templates. The integration of this module enables the model to accept
raw structural inputs from either provided structures or its own outputs, while maintaining structural
flexibility through Gaussian noise perturbation. This capability is particularly valuable in protein
design workflows, where designed sequences / structures can be recycled for confidence verification
and the iterative generation paradigm enables the refinement of previous designs.
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Sequence Co-design Module. GeoFlow-V2 incorporates a novel sequence co-design module to
generate amino acid types for masked residues in pseudo protein sequences. This module predicts
sequence identities for masked regions at each diffusion step, conditioned on both structural represen-
tations from the diffusion module and amino acid predictions from the previous step. We note that
off-the-shelf sequence design methods (Dauparas et al., 2022; Goverde et al., 2024) exist and can be
readily integrated into our model. The integration of our structure conditioning module and sequence
co-design module enables GeoFlow-V2 to operate as a fully bidirectional framework, accepting both
sequence and structural inputs while generating both sequence and structural outputs.

2.2. Constraint Features

Prior structural knowledge—derived from wet-lab experiments (e.g., epitope mapping, alanine scan-
ning mutagenesis data (Haynes et al., 2021; Moreira et al., 2007))—often provides critical constraints
for protein structure prediction. For protein design tasks, we also frequently require both target
structure conditioning and specified binding epitopes (hotspots). To incorporate these requirements,
GeoFlow-V2 integrates three types of constraint features including epitope constraints, contact con-
straints, and Apo / Holo structure conditioning. Let 𝑐𝑖 denote the 𝑖−th chain, 𝑎𝑖, 𝑗 denote the 𝑗−th
token in 𝑖−th chain, 𝑑 denote a distance threshold, and U denote the uniform distribution. The
constraint features are defined as follows:

Epitope constraint. An epitope constraint is formally defined as the tuple (𝑎𝑖, 𝑗, 𝑐𝑘, 𝑑), enforcing that
the minimal distance of the token 𝑎𝑖, 𝑗 to the chain 𝑐𝑘 is smaller than 𝑑 Angstrom, i.e., min

𝑙∈𝑐𝑘
∥𝑎𝑖, 𝑗−𝑎𝑘,𝑙∥ ≤ 𝑑.

Here, the distance between the tokens is defined as the Euclidean distance between representative
atoms of corresponding tokens. During training, 𝑑 is randomly sampled from U(6, 20).

Contact constraint. A contact constraint is formally defined as the tuple (𝑎𝑖, 𝑗, 𝑎𝑘,𝑙, 𝑑), enforcing that
the distance between the token 𝑎𝑖, 𝑗 and the token 𝑎𝑘,𝑙 is smaller than 𝑑 Angstrom, i.e., ∥𝑎𝑖, 𝑗 − 𝑎𝑘,𝑙∥ ≤ 𝑑.
During training, 𝑑 is randomly sampled from U(6, 30).

Structure conditioning constraint. As discussed in Section.2.1, this constraint is the noise-perturbed
distance map extracted from target structures, which are then binned into one-hot features.

We encode epitope constraints and contact constraints using Gaussian smearing (Schütt et al., 2017):

𝜙𝑘 (𝑥) = exp
(
− (𝑥 − 𝜇𝑘)2

2𝜎2
𝑘

)
for 𝑘 = 1, ..., 𝐾 (1)

, where 𝜇𝑘 is calculated as linearly spaced centers and 𝜎𝑘 as the uniform bandwidth:

𝜇𝑘 = 𝑠 + (𝑡 − 𝑠) (𝑘 − 1)
𝐾 − 1 , 𝜎𝑘 = 𝜇2 − 𝜇1 =

𝑡 − 𝑠

𝐾 − 1 . (2)

The hyper-parameters are set to (𝑠 = 6, 𝑡 = 20, 𝐾 = 6) for epitope constraints and (𝑠 = 6, 𝑡 = 30, 𝐾 = 6)
for contact features. The mask value is set to −100. These continuous representations provide gradient
sensitivity to distance thresholds and outperform the one-hot encoding. For structure conditioning
constraints, noise-perturbed distance maps are binned into [0 − 4, 4 − 8, 8 − 16, > 16], with an
additional bin for mask values.

To prevent over-reliance on constraints, each constraint type is independently activated with 20%
probability during training (replaced with pre-defined mask values when inactive), supplemented with
constraint dropout. Epitope and contact constraints are stochastically generated from ground-truth
complexes, where the number of constraints per sample follows a geometric distribution (𝑝 = 1/3).
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For structure conditioning, we randomly partition ground-truth complexes into binder and target
groups–systematically assigning antigens as targets in antibody-antigen systems–and only target
group structures are encoded as constraints.

3. Protein Structure Prediction

We evaluate GeoFlow-V2’s structure prediction performance across three distinct tasks: (1) antibody-
antigen complex prediction using a curated low-homology dataset, (2) protein-ligand docking on
the PoseBusters benchmark (Buttenschoen et al., 2024), and (3) antibody structure prediction on
an independently curated test set. While the model demonstrates robust general protein modeling
capabilities, we particularly emphasize antibody-related assessments–highlighting GeoFlow-V2’s
specialized focus as a unified framework for protein design, especially for de novo antibody design.
These targeted validations verify the structural accuracy required for reliable generative applications.

3.1. Antibody-Antigen Structure Prediction

Setup. We assess prediction performance on a rigorously curated low-homology test set following
AlphaFold 3’s interface validation protocol (Supplementary Section 5.8). The dataset was constructed
by collecting all PDB antibody-antigen complexes released between 2024-06-30 and 2025-01-30,
cropping antibodies to their Fv regions, and filtering complexes to contain 256-1024 residues for
computational efficiency. This process yielded 104 high-quality antibody-antigen complexes for
benchmarking. We compare GeoFlow-V2 against several state-of-the-art approaches: the AlphaFold 3
replicas Protenix (Team et al., 2025), Chai-1 (team et al., 2024), and Boltz (Wohlwend et al., 2024).
The direct AlphaFold 3 comparison was precluded by license restrictions. We also include AlphaFold
Multimer V2.3 and GeoFlow-V1 (BioGeom, 2024) as baselines. For diffusion-based methods, we
generate 50 predictions per target (10 random seeds × 5 diffusion samples each), while AlphaFold
Multimer V2.3 predictions are obtained by ensembling 5 model weights with 10 random seeds each.
All predictions are evaluated using the DockQ score (Basu and Wallner, 2016) under three scenarios:
Top-1 (single highest-ranked prediction), Top-10 (best prediction among the top 10 ranked outputs),
and Oracle (best possible prediction across all samples). We define the DockQ success rate as the
percentage of antibody-antigen complexes with DockQ > 0.23.

GeoFlow-V2 achieves state-of-the-art performance on antibody-antigen docking. Fig.2A (left
panel) illustrates the comparative docking performance across evaluated methods. GeoFlow-V2
demonstrates superior accuracy, achieving a 45.19% top-1 success rate across all three evaluation
scenarios–surpassing both AlphaFold 3-derived replicas and established baselines. Key observations
and discussions are as follows.

• GeoFlow-V2 establishes new state-of-the-art performance, while Protenix, Chai-1, and GeoFlow-
V1 form a secondary tier.

• Despite these advances, antibody-antigen docking remains fundamentally challenging, with
substantial space for improvement even for top-performing methods.

• We hypothesize that further gains could be achieved through: (1) Inference-time scaling (Ma
et al., 2025) (additional random seeds / MSA searches); (2) Enhanced noise sampling strate-
gies (Yang et al., 2025); and (3) More accurate confidence estimation modules.

Boosting Docking Performance with Constraints Guiding. We next evaluate how different con-
straint features enhance GeoFlow-V2’s docking accuracy on low-homology antibody-antigen sets
using three DockQ metrics: acceptable (DockQ > 0.23), medium (DockQ > 0.49), and high (DockQ
> 0.80).
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Figure 2 | Performance comparison across several benchmarks.
For all panels, the bar heights represent the mean values across test cases, with error bars indicating 95% confidence
intervals obtained through 10,000 bootstrap resamples for the antibody-antigen set and exact binomial distribution for
PoseBusters set. (A) Comparison of protein complex structure prediction performance across different models. Left panel:
Percentage of antibody-antigen complexes with DockQ > 0.23 on a low-homology antibody-antigen test set, evaluated
under three prediction scenarios: Top-1 (top-ranked prediction), Top-10 (best prediction among top-10 ranked predictions),
and Oracle (best possible predictions). Right panel: Performance on the Ligand PoseBusters benchmark set. Success rates
represent the percentage of samples with pocket-aligned ligand RMSD < 2 Å. The results of AF3 were calculated using
provided predictions and the results of RFAA were taken from AF3’s paper. The scores are calculated on the top-ranked
prediction based on its confidence scores. (B) Benchmark performance of GeoFlow-V2 on a low-homology antibody-antigen
test set, with varying levels of docking constraint features. Bars are grouped by different docking accuracy levels (Acceptable,
Medium, High) measured on top-ranked predictions (left panel) and Top-10-ranked predictions (right panel).
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Figure 2 | Performance comparison across several benchmarks. (Cont.)
(B) Blind: Vanilla GeoFlow-V2 without constraints, taking only antibody and antigen sequences as inputs. One Contact
(15Å / 25Å): We randomly select one antibody-antigen residue pair within 15Å / 25Å C𝛼 distance and provide this pair
along with the distance threshold as template features to the model. One Epitope (8Å) / Four Epitopes (8Å): We define
the epitope as one (or four) random antigen residue(s) with C𝛼 atom within 8Å of the antibody chain, and then provide
these residues as template features to the model. Holo Antigen: We provide the bound structure of the antigen chains as
template features to the model. Note the model is still required to generate the whole antibody-antigen structures from
random Gaussian initialization. (C) A cherry-picked example of antibody-antigen structure prediction for PDB ID 8VGI with
and without epitope constraints. Coloring scheme: Gray for ground-truth antibody-antigen complexes; Blue for predicted
antigens and epitope residues; Green and Orange for predicted heavy and light chains.

Six evaluation settings are compared: (1) Blind docking using only sequence inputs, (2) One Contact
constraint with a single antibody-antigen residue pair within either 15Å or 25Å C𝛼 distance, (3) One
Epitope constraint with a random antigen residue within 8Å of the antibody, (4) Four Epitopes with
four such antigen residues, and (5) Holo Antigen structure conditioning constraint, while still requiring
full complex prediction from random initialization. Key observations (Fig.2B) and discussions are as
follows:

• Structural constraints substantially improve docking performance, with four epitope constraints
boosting the top-1 acceptable success rate from 45% to 75%, demonstrating particular value
when prior knowledge from experimental data or design hotspots are available. An example is
visualized in Fig.2C.

• Holo antigen constraints show unique advantages for high-accuracy predictions (DockQ > 0.80),
despite potential information leakage from the bound structure, making them especially useful
for antibody optimization (Cai et al., 2024) and antibody design (Bennett et al., 2024) scenarios
where bound structures might be available.

• Four-epitope constraints achieve the best overall performance in acceptable and medium ac-
curacy ranges, confirming the model’s ability to precisely follow specified binding hotspots–a
critical capability for de novo protein design applications. These results collectively estab-
lish the GeoFlow-V2 as an effective and flexible tool for both constrained and unconstrained
antibody-antigen docking tasks.

3.2. Protein-Ligand Structure Prediction

Following the Chai-1 (team et al., 2024) evaluation protocol, we define prediction success as achieving
a ligand root mean square deviation (RMSD) below 2Å from the ground truth structure. Our
benchmarking compares GeoFlow-V2 against three established baselines: Chai-1, AlphaFold 3, and
RoseTTAFold AllAtom (Krishna et al., 2024), using published results from their respective papers. For
GeoFlow-V2 evaluation, we analyze the top-ranked prediction across five model seeds, with each seed
generating five diffusion samples. As shown in Fig. 2A (right panel), GeoFlow-V2 achieves a 77%
success rate on the protein-ligand structure prediction task. This result demonstrates the ability of
the model to model protein-ligand interactions, which is crucial for designing ligand-binding proteins
where precise molecular recognition is essential.

3.3. Ultra-fast Antibody Structure Prediction

Accurate antibody structure prediction remains challenging, especially for CDR loop modeling (Ruffolo
et al., 2023). Current models (Abanades et al., 2022; Ruffolo et al., 2022) typically rely on limited
specialized datasets like SAbDab (Dunbar et al., 2014), which contains approximately 10,000 antibody
structures. Inspired by AlphaFold 2 monomer distillation techniques (Jumper et al., 2021), we
hypothesize that training a lightweight GeoFlow-V2 variant on the OAS database’s (Olsen et al., 2022)
millions of paired antibody sequences could simultaneously improve both prediction accuracy and
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computational efficiency, with details provided next.

Lightweight GeoFlow-V2 Training. We develop a lightweight variant of GeoFlow-V2 specialized for
antibody structure prediction named as GeoFlow-V2-ab, by reducing the number of input embedding
layers from 48 to 8 while maintaining the core architecture. The model follows a two-phase training
protocol as visualized in Fig.3D. First, pretraining is performed exclusively on the SAbDab dataset with
a 2024-06-30 cutoff date. This dataset is rigorously curated by removing structures with incomplete
Fv regions, excluding entries with resolutions worse than 4Å, cropping to Fab regions, and clustering
antibodies at a minimum CDR similarity threshold of 0.8.

The trained model predicts structures for approximately 1.86 million paired antibody sequences
from the OAS database. We filter predictions using a confidence score threshold of 0.70, retaining
high-quality outputs to create the OAS-paired distilled dataset. The lightweight GeoFlow-V2 is then
re-trained from scratch using a balanced 1:1 mixture of the original SAbDab data and this new
distilled set.

Performance Evaluation. For rigorous evaluation, we construct a low-homology test set containing
285 antibodies–205 conventional antibodies and 80 nanobodies–released after the training cutoff
(post 2024-06-30) from clusters absent in the training data. We compare GeoFlow-V2-ab against
ABodyBuilder3 (Kenlay et al., 2024) and AlphaFold Multimer V2.3 for antibody structure prediction,
and include NanoBodyBuilder2 (Abanades et al., 2023) and AlphaFold Multimer V2.3 as baselines for
nanobody structure prediction. The comparison against IgFold (Ruffolo et al., 2023) was precluded
by license restrictions. We evaluate all methods by calculating backbone heavy-atom (N, C𝛼, C, O)
RMSD values after framework residue alignment, with separate analyses for antibodies (Fig.3A) and
nanobodies (Fig.3B). Key observations include:

• All methods demonstrate high accuracy in predicting framework structures for both heavy
and light chains, achieving median sub-angstrom RMSD values for CDR1 and CDR2 regions.
However, this precision does not extend equally to CDRH1 and CDRH2 in nanobodies, likely
due to limited nanobody training data availability.

• GeoFlow-V2-ab Distilled establishes new state-of-the-art performance. While the median im-
provement over the naive model is modest, the distilled version significantly reduces outlier
predictions evidenced by lower 1.5×IQR ranges, demonstrating more robust performance.

• we observe that AlphaFold Multimer V2.3, despite its computational intensity and MSA require-
ments, is frequently outperformed by specialized baselines in multiple evaluation settings. This
suggests dedicated antibody structure predictors may be preferable for routine applications
where runtime efficiency is crucial.

Runtime Analysis. Fig.3C compares prediction runtimes (log scale) for antibody (left panel) and
nanobody (right panel) structure prediction across three methods: GeoFlow-V2-ab, ABodyBuilder3
/ NanoBodyBuilder2, and AlphaFold Multimer V2.3. All benchmarks were conducted on identical
hardware (single NVIDIA A100 GPU). GeoFlow-V2-ab achieves consistent 150–250× faster inference
than AlphaFold Multimer V2.3 while maintaining competitive or better accuracy. The combination of
computational efficiency and maintained accuracy suggests GeoFlow-V2-ab is particularly suited for
scenarios requiring rapid structure generation, such as high-throughput antibody screening. It can
also aid antibody optimization workflows when structures are undetermined (e.g., structure-based
developability prediction).
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Figure 3 | Performance and runtime comparison for antibody structure prediction.
The root-mean-square deviation (RMSD) values were calculated over backbone heavy atoms after aligning the corresponding
framework residues. The box plots display the median (center line), interquartile range (IQR, box boundaries), with
whiskers extending to 1.5 × IQR. Outliers beyond 1.5 x IQR are shown as individual points. (A) Benchmark performance of
GeoFlow-V2-ab, GeoFlow-V2-ab (without OAS-paired distillation), ABodyBuilder3, and AlphaFold-Multimer V2.3 (AFM2.3)
on antibody structure prediction (n = 205 test cases). Due to the high structural variability and typically larger deviations
in CDR-H3, we present it separately (right panel) to allow for a more detailed comparison across methods, while the left
panel shows RMSD distributions for framework regions and other CDRs (H1, H2, L1–L3). (B) Benchmark performance of
GeoFlow-V2-ab, GeoFlow-V2-ab (without OAS-paired distillation), NanoBodyBuilder2, and AFM2.3 on nanobody structure
prediction (n = 80 test cases). (C) Antibody (left panel) and nanobody (right panel) prediction runtimes (log scale)
for GeoFlow-V2-ab, ABodyBuilder3 / NanoBodyBuilder2, and AFM2.3. Bar heights show average runtime for predicting
one structure in seconds, with dashed lines indicating speedup factors relative to AFM2.3. GeoFlow-V2-ab demonstrates
consistent 150-250× faster runtime compared to AFM2.3 while maintaining competitive or higher accuracy. (D) Workflow
for developing specialized GeoFlow-V2 for antibody structure prediction. The model is first pre-trained on SAbDab dataset,
which is used to create the OAS-paired distilled dataset. The lightweight GeoFlow-V2 is then re-trained from scratch using
a balanced 1:1 mixture of the original SAbDab data and this new distilled set.
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4. De Novo Antibody Design

To assess the performance of GeoFlow-V2 in de novo antibody design, we focus on in silico evaluations
across three critical dimensions: (1) Structure Generation Performance–quantifying the model’s ability
to generate structurally valid antibodies with optimal paratope geometry and favorable interaction
patterns; (2) Binder Discrimination Performance–benchmarking the model’s capability to differentiate
true binders from non-binders based on wet-lab data; (3) Virtual Screening Success Rates–assessing
the model’s ability to produce promising candidates that meet in silico-defined binding criteria. Based
on these computational insights, de novo VHH and antibody libraries have been designed against
several therapeutic-relevant targets and subsequently synthesized as oligo pools for downstream
validation. Experimental results will be reported in a future update to this technical report.

4.1. Structure Generation Performance

Setup. This task evaluates the model’s capability to generate structurally valid antibodies by measuring
(1) whether the generated antibody structures adhere to the specified hotspots; and (2) whether the
generated antibody structures adopt CDR-loop-mediated interactions. To this end, we curate a bench-
mark set named GeoFlow benchmark, consisting of 7 published therapeutic targets (Shanehsazzadeh
et al., 2023a) (IL17A, ACVR2B, FXI, TSLP, IL36R, TNFRSF9, C5) for antibody design and 3 in-house
targets for nanobody design. We note that the 7 published antibody targets have corresponding
reference antibody-antigen complex structures as well as 1,243 binding data points obtained via
inverse folding and SPR (Shanehsazzadeh et al., 2023a), while the 3 nanobody targets do not have
any reference nanobody binding poses.

We benchmark GeoFlow-V2 against RFAntibody (Bennett et al., 2024), the current state-of-the-art
antibody design method with full design workflow and experimental validation, which is built upon
the RFdiffusion framework (Watson et al., 2023). While other machine learning-based antibody design
approaches exist, direct comparison was infeasible due to several limitations: some methods (Luo et al.,
2022) require known binding poses as input, while others (Wang et al., 2024) impose non-commercial
licensing restrictions.

Unless specified otherwise, we follow Bennett et al. (2024) and adopt the standardized humanized
VHH framework (h-NbBcII10FGLA) (Vincke et al., 2009) as the template for nanobody (VHH) design.
For conventional antibody design, we utilize the Trastuzumab framework (Cho et al., 2003). This
approach aligns with real-world design campaigns, where predefined frameworks are typically
employed rather than native frameworks from reference antibodies. Importantly, it avoids potential
model memorization of native reference antibody frameworks while providing a robust starting
point for candidate developability by leveraging well-characterized frameworks. For each target
antigen, we (1) select five binding-critical hotspot residues which are used by both methods; (2)
generate 1,000 de novo designed structures using both GeoFlow-V2 and RFAntibody (following the
instructions from its official github repository); and (3) the CDR lengths are set to {L1:8-13,L2:7,L3:9-
11,H1:7,H2:6,H3:8-13} for conventional antibodies and {H1:7,H2:6,H3:8-16} for nanobodies under
the Chothia definition.

Trastuzumab Antibody Sequences.

Heavy chain:
EVQLVESGGGLVQPGGSLRLSCAASGFNIKDTYIHWVRQAPGKGLEWVARIYPTNGYTRY
ADSVKGRFTISADTSKNTAYLQMNSLRAEDTAVYYCSRWGGDGFYAMDYWGQGTLVTVSS
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Light chain:
DIQMTQSPSSLSASVGDRVTITCRASQDVNTAVAWYQQKPGKAPKLLIYSASFLYSGVPSR
FSGSRSGTDFTLTISSLQPEDFATYYCQQHYTTPPTFGQGTKVEIK

h-NbBcII10FGLA VHH Sequence.

VHH:
QVQLVESGGGLVQPGGSLRLSCAASGGSEYSYSTFSLGWFRQAPGQGLEAVAAIASMGGLT
YYADSVKGRFTISRDNSKNTLYLQMNSLRAEDTAVYYCAAVRGYFMRLPSSHNFRYWGQGT
LVTVSS

We evaluate structure generation performance using five metrics:

• Hotspot Pass Rate: The percentage of designs where ≥ 3 specified hotspot residues (60% of
total) maintain minimal C𝛼 distances < 9 Å to the antigen. This relaxed criterion balances
stringency with practical design feasibility.

• CDR Interaction Pass Rate: The percentage of designs with CDR-mediated antigen interfaces.
While framework-mediated binding (Fig.4A) occurs naturally (Zavrtanik et al., 2018) and is
also reported in Bennett et al. (2024), we exclude such cases as they usually require framework
redesign for high affinity (Yamamoto et al., 2025), which is beyond our scope. We use the
following relaxed criteria to determine if the structure adopts the CDR-mediated interactions.
For each CDR region, we define the CDR interaction criterion by a tuple (𝑛𝑎𝑚𝑒, 𝑛, 𝑑), where 𝑛𝑎𝑚𝑒
denotes the name of the CDR region (e.g., HCDR3), 𝑛 denotes the minimal interacting residues
for a CDR to be considered as interacting, and 𝑑 denotes the interacting distance threshold. A
residue is considered as interacting if it has minimal C𝛼 distance < 𝑑 Å to the antigen.
The relaxed interaction criterion for antibody is:

(HCDR1, 1, 15) (HCDR2, 1, 15) (HCDR3, 3, 8)
(LCDR1, 1, 15) (LCDR2, 1, 15) (LCDR3, 1, 12)

The relaxed interaction criterion for nanobody is:

(HCDR1, 1, 10) (HCDR2, 1, 12) (HCDR3, 3, 8)

• Overall Pass Rate: The percentage of designs meeting both hotspot and CDR-interface criteria
while being sterically clash-free (per AF3 standards (Abramson et al., 2024)).

• Framework Recovery Rate: The percentage of designed structures (averaged among targets)
achieving framework C𝛼 root-mean-square deviation (RMSD) below specified thresholds. The
RMSD values are calculated over shared framework residues (Chothia numbering) after antigen
superposition, whichmeasures the orientation fidelity of designed structures to reference binding
poses. Note: Higher RMSD values do not necessarily indicate worse designs, as valid alternative
binding modes may exist. This serves as an efficient computational proxy for structural validation
before experimental characterization.

• Diversity: The percentage of designed structures exhibiting novel binding modes. Generated
structures are clustered using a threshold of 5Å framework C𝛼 RMSD, and Diversity is calculated
as the ratio of the number of clusters to the total number of designs. We note that this metric is
correlated to the number of generated samples. For the sake of computational efficiency and
to avoid the sample size effect, we randomly subsample 100 structures from 1,000 generated
structures and report the mean statistic over multiple rounds.
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Interaction Pattern Evaluation. We compare GeoFlow-V2 and RFAntibody performance on the
GeoFlow benchmark using three metrics: Hotspot, CDR Interaction, and Overall. As shown in
Fig. 5A, key findings include:

• Both methods achieve high median pass rates (> 0.8) across ten targets, demonstrating strong
baseline performance.

• However, GeoFlow-V2 shows superior robustness, particularly on three challenging targets–one
in-house nanobody and two antibody targets (ACVR2B and FXI)–where RFAntibody underper-
forms. This may reflect RFAntibody’s reported sensitivity to precise hotspot selection.

• While both methods maintain median overall pass rates above 0.5, GeoFlow-V2 delivers more
robust and consistent results across all targets.

Framework Recovery Evaluation. We assess GeoFlow-V2 and RFAntibody on 7 antibody targets from
IgDesign (Shanehsazzadeh et al., 2023a), excluding nanobody targets due to unavailable reference
poses. Two framework scenarios are evaluated: (1) GtFr: Using reference antibody frameworks
(direct RMSD calculation via target alignment); (2) TplFr: Using template frameworks (Trastuzumab;
RMSD calculated heuristically over Chothia-numbered shared residues). As shown in Fig. 5B, key
findings include:

• Both methods achieve strong recovery with reference frameworks (GtFr), even at stringent
thresholds.

• GeoFlow-V2 significantly outperforms RFAntibody with template frameworks (TplFr), demon-
strating its superior generalizability for real-world antibody design without reference antibody
frameworks.

We present representative structures that fail to adhere to specified hotspots or adopt framework-
mediated interfaces in Fig.4A, and present the best-performing (lowest C𝛼 RMSD to reference
poses) designed antibody structures across seven antibody targets in Fig. 4B, generated using the
Trastuzumab template framework. These results demonstrate GeoFlow-V2’s capability to produce
high-quality antibody candidates, enabling efficient in silico screening and subsequent experimental
validation.

Table 1 | The percentage of designed structures exhibiting unique binding modes across ten targets.

Nb-1 Nb-2 Nb-3 TSLP FXI IL36R TNFRSF9 C5 ACVR2B IL17A

GeoFlow-V2 7% 16% 14% 7% 17% 12% 29% 26% 11% 31%
RFAntibody 8% 19% 19% 26% 20% 19% 40% 57% 21% 51%

Diversity Evaluation. Both GeoFlow-V2 and RFAntibody demonstrate the ability to generate diverse
binding modes across all ten targets, as measured by novel structural clustering (Tab. 1). These
results were obtained using fixed hotspot configurations and default diffusion hyperparameters. In
practical applications, diversity could be further enhanced through the strategic selection of multiple
hotspot configurations and optimization of diffusion hyper-parameters. While RFAntibody shows
better diversity metrics, we attribute this difference to the integration of structure prediction tasks in
GeoFlow-V2, which may impose beneficial structural inductive bias (as indicated by better structure
generation performance) that slightly reduce conformational exploration–a trade-off that can be
modulated by adjusting the task ratio during training.

4.2. Binder Discrimination Performance

Setup. While high-throughput in silico antibody generation can produce millions of candidates, wet-
lab validation remains bottlenecked by experimental throughput. To bridge this gap, computational
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Figure 4 | Overview of Antibody Design and Validation Workflow.
(A) Representative structures from structure generation evaluation. Antigen representation: Gray surface with blue
highlights for specified hotspot residues. Coloring scheme: Blue for CDR-H3; Orange for CDR-H1/H2; Pink for CDR-L
(antibodies) or framework region 2 (nanobodies). (a & b) Antibodies with successful hotspots targeting. (c & d) Antibodies
with failed hotspots targeting. (e & f) Nanobodies with CDR-mediated interactions. (g & h) Nanobodies with framework-
mediated interactions. (B) Designed antibody structures with minimal C𝛼 RMSD to reference poses across seven targets,
generated using the Trastuzumab template framework. Coloring scheme: Gray for native antibody-antigen complexes;
Green for designed heavy chains; Orange for designed light chains. (C)Workflow of design system. Starting from the target
structure (hotspots highlighted in blue), the GeoFlow-V2 generates de novo designed structures and sequences of antibody
candidates, which are recycled into GeoFlow-V2 for refolding (with complete antibody sequences). Confidence scores from
both design outputs and folding outputs are used to predict whether a design will bind. Finally, the predicted binders are
validated through experiments to identify confirmed binders.
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Table 2 | Summary of binder/non-binder datasets used for discrimination evaluation

HER2 5A12 5A12 TSLP FXI IL36R TNFRSF9 C5 ACVR2B IL17A
Trastuzumab VEGF ANG-2

PDB ID 1N8Z 4ZFG 4ZFF 5J13 6HHC 6U6U 6A3W 5I5K 5NGV 6PPG
Binders 417 701 120 115 34 29 29 30 15 6
Non-binders 823 499 1,080 61 82 148 156 168 197 173
Binder Rate (%) 33.6 58.4 10.0 65.3 29.3 16.4 15.7 15.2 7.1 3.4

pre-screening is essential for prioritizing high-probability binders before costly wet-lab testing. In this
section, we evaluate GeoFlow-V2’s ability to discriminate true binders from non-binders using ten
published benchmark datasets with wet-lab validated binding data. The statistics of ten datasets are
summarized in Tab.2.

• HER2 Trastuzumab (Shanehsazzadeh et al., 2023b): This benchmark comprises 1,240 designs
(417 SPR-confirmed binders vs 823 non-binders) generated through zero-shot AI-based CDR
engineering of trastuzumab targeting HER2 (PDB ID: 1N8Z).

• 5A12 VEGF & 5A12 ANG-2 (Minot and Reddy, 2024). These two datasets are derived from
combinatorial mutagenesis of CDR-H2 (9 residues) and CDR-L1 (8 residues) in the 5A12
antibody, validated via yeast display with FACS sorting. The VEGF library contains 642,080
variants (375,267 binders, 58.4% rate), with our benchmark subset comprising 701 binders
and 499 non-binders reflecting the original distribution. The ANG-2 library includes 711,912
variants (13,227 binders, 1.86% rate), subsampled to 120 binders and 1,080 non-binders for
balanced evaluation. (PDB ID: 4ZFG & 4ZFF)

• IgDesign Datasets (Shanehsazzadeh et al., 2023a): This benchmark comprises seven ther-
apeutic targets from the IgDesign study, featuring SPR-validated binding data for designs
generated via two strategies: (1) HCDR-3-only redesign and (2) full HCDR-123 redesign within
native antibody frameworks. The curated dataset contains 1,243 designs (258 binders and 985
non-binders) with various target-specific binder rates.

We benchmark GeoFlow-V2 with the following baselines: RFAntibody-Score, the filtering module fine-
tuned from RoseTTAFold2 in the state-of-the-art antibody design method RFAntibody (Bennett et al.,
2024); and AlphaFold Multimer V2.3-initial guess, a variant of AlphaFold Multimer V2.3 (Evans
et al., 2021) equipped with the initial guess mechanism similar to Bennett et al. (2023). Note
that unlike structure prediction, binder discrimination for antibody design remains understudied
in computational biology, with no established benchmarks or standardized metrics. Our selection
represents the most relevant approaches available. The prediction protocol is as follows:

• GeoFlow-V2-Score evaluates designed antibody-antigen complexes by taking both the antibody
and antigen sequences and five binding-critical hotspot residues as input epitope constraints.
The model performs full structure prediction of the designed complexes and generates multiple
confidence scores similar to AlphaFold 3 (Abramson et al., 2024), including a self-consistency
metric that quantifies the agreement between the designed structures and GeoFlow-V2’s pre-
dictions. While both design and folding stages produce confidence scores, this evaluation
exclusively uses the folding-stage scores. We visualize this procedure in Fig.4C.

• RFAntibody-Score. We utilize the official implementation of RFAntibody. The model was
fine-tuned from RoseTTAFold 2, which can predicts the structures of designed antibody-antigen
complexes and produce a set of confidence scores, such as interface PAE (Predicted Aligned
Error), target-aligned antibody RMSD, and framework-aligned CDR RMSD.

• AlphaFold Multimer V2.3-Initial Guess provides a MSA-free assessment of designed antibody-
antigen complexes by leveraging AlphaFold’s structure prediction capability. The implementation
takes the designed complexes as templates (chain level) and initialization of the structure module,

15



GeoFlow-V2: A Unified Atomic Diffusion Model for Protein Structure Prediction and De Novo Design

while strategically masking all CDR regions to prevent information leakage from the designed
structures. The model generates predicted complex structures and multiple confidence scores,
such as interface PAE, target-aligned antibody RMSD, binder-aligned RMSD, etc. We implement
this model using OpenFold’s (Ahdritz et al., 2024) codebase.

Evaluation Results. We choose interface PAE scores as our primary binding metrics for all models,
based on empirical performance optimization. We treat reference antibody-antigen structures as
“designed” structures. While we recognize that such practice may not fully reflect real-world design
scenarios, this approach remains justified for our benchmark context as the datasets primarily consist
of designs generated through either (1) inverse folding or (2) combinatorial mutations starting from
the reference structures. We exclude any designs with length discrepancies from their reference
structures. Performance is quantified using the Area Under the Receiver Operating Curve (AUROC)
metric, with results presented in Fig.5C and Fig.5D. Key findings include:

• All methods show predictive power, but none dominates across all targets. GeoFlow-V2 achieves
the most consistent performance, while AlphaFold Multimer V2.3 shows the highest variance.

• GeoFlow-V2 outperforms in robustness, maintaining stable accuracy across diverse targets.
• Manual inspection reveals that GeoFlow-V2 more accurately recovers designed binding poses
and maintains hotspot contacts compared to RFAntibody and AlphaFold Multimer V2.3. This
may explain GeoFlow-V2’s superior robustness.

Binder discrimination performance represents a critical bottleneck for achieving high success rates
in de novo antibody design. While further wet-lab validation data will be essential for developing
more accurate models, our evaluation demonstrates that GeoFlow-V2-Score serves as a promising
computational screening tool for antibody design pipelines.

4.3. Virtual Screening Success Rates

We evaluate the end-to-end performance of GeoFlow-V2 and RFAntibody in designing high-quality
antibody candidates by measuring their virtual screening pass rates – the percentage of designs
predicted to bind via our GeoFlow-V2-Score metric. The assessment uses the same ten targets from
our structure generation benchmarks, with consistent design protocols as described in Section 4.1.
For each target, we select five binding-critical hotspot residues and generate 1,000 de novo designed
antibody structures and sequences. For RFAntibody, we augment each structure with 10 Protein-
MPNN (Dauparas et al., 2022)-designed sequences and keep the top-scoring sequence. All designs
are evaluated identically using GeoFlow-V2-Score’s interface PAE metric (Section 4.2), with the 8.5
Å threshold empirically determined to separate binders from non-binders. The virtual screening pass
rate (visualized in Fig.5E) quantifies each method’s ability to produce viable candidates that meet
this binding criterion. Key findings include:

• GeoFlow-V2 achieves higher median success rates (0.179) compared to RFAntibody (0.077),
demonstrating superior robustness across all ten targets. While this comparison uses GeoFlow-
V2 ’s scoring module and might be biased, the consistent performance gap suggests meaningful
improvements in design quality.

• We observe substantial variation in success rates across targets, with both methods struggling
on challenging cases like TNFRSF9 (GeoFlow-V2: 0.029, RFAntibody: 0.007). These results
suggest the need for target-specific threshold adjustments and higher experimental throughput
in real-world scenarios.

• The systematically lower pass rates for nanobody targets highlight limitations in current training
data, emphasizing the requirement for dedicated nanobody optimization in future algorithmic
developments.
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Figure 5 | In-silico performance of GeoFlow-V2 and baselines across multiple benchmarks.
(A) Performance of GeoFlow-V2 and RFAntibody on curated structure quality benchmark set, consisting of 7 published
targets (IL17A, ACVR2B, FXI, TSLP, IL36R, TNFRSF9, C5) for antibody design and 3 in-house targets for nanobody design.
Box plots show the distribution of averaged structure filter pass rates for each target, with whiskers extending to 1.5 x
IQR. Outliers beyond 1.5 x IQR are shown as individual points. Individual data points (averaged pass rate for each target)
are overlaid as dodged dots. Metrics are as follows. Hotspot: percentage of designs that adhere to the specified hotspots.
CDR Interaction: percentage of designs with CDR-loop-mediated interfaces. Overall: percentage of designs that pass
both Hotspot and CDR Interaction filters. The detailed definitions of these criteria can be found in the main text. (B)
Performance of GeoFlow-V2 and RFAntibody on recovering reference antibody’s framework orientation under various RMSD
thresholds. The RMSD values were calculated over shared antibody framework residues between designed antibodies and
reference antibodies under the Chothia numbering scheme after aligning the target (antigen) residues. Solid curves (GtFr)
show recovery results for designs that use the ground-truth antibody frameworks, while the dashed curves (TplFr) show
results for designs that use a shared template antibody (or nanobody) framework. (C & D) Performance of GeoFlow-V2,
RFAntibody, and AlphaFold-Multimer V2.3 initial guess (AFM2.3-IG) on the binder / non-binder discrimination task across
10 targets. The bar heights represent the AUROC values. (E) In silico virtual screening success rates with GeoFlow-V2-Scorer
of GeoFlow-V2 and RFAntibody on the curated target set (7 published targets and 3 in-house targets). Box plots show the
distribution of success rates for each target, with whiskers extending to 1.5 x IQR. The individual data points are visualized
as horizontally-dodged dots, with nanobody targets highlighted in orange and antibody targets shown in blue.
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These in silico evaluations demonstrate GeoFlow-V2 ’s capability in generating structurally valid
antibodies with optimized paratope geometry, discriminating high-affinity binders, and enriching
promising candidates through virtual screening.

5. Unified Generative Modeling for Protein Binder Design

5.1. Overview

GeoFlow-V2 provides a unified framework for protein binder design through atomic-level modeling of
molecular interactions. The approach supports diverse target modalities–including proteins, nucleic
acids (DNA/RNA), and small molecules–while accommodating flexible design constraints such as (1)
specified binding sites or interaction modes through epitope and contact constraints; and (2) partial
structural knowledge of either target or binder via structure conditioning constraint features. The
following sections discuss potential use cases across different target classes.

5.2. Design of Flavin-binding Proteins

Flavin cofactors (Mewies et al., 1998) such as FAD and FMN are essential redox-active groups in
natural enzymes. Designing proteins capable of binding and potentially utilizing flavins could pave
the way for novel enzymes with redox activity, or for applications in biocatalysis (Tong et al., 2023),
biosensing (Bitzenhofer et al., 2022), and synthetic metabolic pathways (Duan et al., 2025). GeoFlow-
V2 can generate diverse, high-quality potential binders by directly specifying FAD or FMN as a
design condition. It also provides the capability to redesign known motifs by specifying regions for
modification, which can be beneficial in contexts where a balance between functional retention and
structural variation is desired. Below we present an example of an FAD binder candidate generated by
GeoFlow-V2. The resulting protein–ligand complex exhibits a well-packed and structurally reasonable
binding conformation, with numerous intermolecular interactions.

Input
• Chain 1: Ligand, CCD code FAD
• Chain 2: Protein, pseudo sequence of 150 masked residues

A B

Figure 6 | Example of a flavin-binding protein designed by GeoFlow-V2.
(A) Illustration of an FAD binder candidate designed by GeoFlow-V2. The design exhibits a self-consistency RMSD of 0.689
and a consistency confidence score of 1.58. The designed binder structure is shown in green, the designed FAD binding
conformation in orange, and the re-predicted binder structure and binding conformation in gray. (B) Zoomed-in view of
the interactions between the designed FAD binder and FAD, generated using PLIP (Adasme et al., 2021). Hydrophobic
interactions, hydrogen bonds, 𝜋–stacking (parallel), 𝜋–cation interactions, and salt bridges are represented by black dotted,
blue solid, green dotted, orange dotted, and yellow dotted lines, respectively.
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5.3. Design of OKT3-Masking Peptide

OKT3 is a murine monoclonal antibody of the immunoglobulin IgG2a isotype (Norman, 1995),
targeting CD3, a signal complex that initiates T cell activation and determines the specificity of the
immune response (Menon et al., 2023). Designing a short peptide that binds to OKT3, i.e., a masking
peptide, may offer a potential means of modulating immune responses. GeoFlow-V2 can effectively
leverage known antibody structures (Kjer-Nielsen et al., 2004) to design diverse binding peptides in
key loop regions. Below we present examples of OKT3-masking peptide generated by GeoFlow-V2.

Input
• Chain 1: Protein, Light chain of OKT3, 1SY6[A]
• Chain 2: Protein, Heavy chain of OKT3, 1SY6[B]
• Chain 3: Protein, pseudo sequence of 15 masked residues

Figure 7 | Examples of OKT3-masking peptide designed by GeoFlow-V2.
The designed peptide structure is shown in green, the designed OKT3 conformation in orange, and the re-predicted complex
structure and binding conformation in gray. Although structural information of the target is provided, GeoFlow-V2 does not
rigidly fix the target conformation; instead, it allows for a certain degree of structural flexibility to facilitate the formation
of a more plausible binding mode.

5.4. Design of Competitive Binder for NhaR-mediated Transcriptional Activation

NhaR is a transcriptional activator protein in Escherichia coli (strain K12) that promotes the expres-
sion of the nhaA Na+/H+ antiporter gene by binding to a specific DNA sequence upstream of the
gene, thereby enabling the cell to respond to changes in pH and salt concentration (Rahav-Manor
et al., 1992). Designing a synthetic protein that competes with NhaR for binding to this regulatory
DNA region could block NhaR-mediated transcriptional activation, offering a potential strategy for
modulating associated physiological processes. GeoFlow-V2 enables de novo design of DNA-binding
proteins directly from target sequence information. GeoFlow-V2 allows for the specification of a target
hotspot position as a design constraint. While the model generally adheres to the constraint with a
high likelihood, alternative binding mode may still be explored when structurally favorable. Below
we present examples of competitive binder generated by GeoFlow-V2.

Input
• Chain 1: DNA, 5’-GCTCGTAAAAAACGAAT-3’
• Chain 2: DNA, 3’-CGAGCATTTTTTGCTTA-5’, hotspot positions [7,8]
• Chain 3: Protein, pseudo sequence of 85 masked residues
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Hotspot Followed Wrong Groove

Figure 8 | Examples of competitive binders for nhaR-mediated transcriptional activation, designed by GeoFlow-V2.
Coloring scheme: Green for the designed peptide structures; Blue for hotspot regions; Orange for the designed DNA
conformations; Gray for the re-predicted complex structures and binding conformations. Left: examples of binders designed
by GeoFlow-V2 targeting the groove specified by the input hotspot. Right: an example where the binder docks to an
alternative groove. While GeoFlow-V2 generally adheres to the specified hotspot with high probability, alternative binding
modes may still occur.

6. Conclusion, Limitations and Future Directions

We have presented GeoFlow-V2, a unified atomic diffusion framework that establishes a novel paradigm
for bridging structure prediction and generative design. While the model demonstrates strong
performance and provides a unified generative framework, we also acknowledge that GeoFlow-V2 has
some limitations. First, the architecture requires pre-defined atom configurations for generative design
(e.g., C, N, O, C𝛼 for masked protein residues), and cannot yet handle small molecule generation and
nucleic acid generation. Second, as a pure all-atom model without the frame-based inductive biases
used in AlphaFold 2, it occasionally produces ligand conformations with incorrect chirality. Third,
there remains substantial space for improvement on challenging tasks, such as antibody-antigen
docking. These limitations point to clear directions and our future work includes:

• Comprehensive experimental validation across diverse target classes for de novo protein design;
• Expansion to nucleic acid and small molecule design tasks, fully leveraging the model’s multi-
modal capabilities;

• Implementation of advanced inference-time scaling techniques to enhance model performance.

We look forward to collaborating with the scientific community to advance this technology and
explore its potential for accelerating discoveries in structural biology and therapeutic development.
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